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NEW SOLUTIONS OF HO-DIMENSIONAL STATiONARY EULER EQUATIONS* 

O.V. KAPTSOV 

A generalized method of separation of variables is used to obtain new 
particular solutions for the stream function describing two-dimensional 
stationary motions of an ideal fluid. patterns of streamlines are 
given. The proof of the stability of some of the solutions is based on 
a theorem due to Arnol'd /l/. 

1. In the case of the two-dimensional stationary motion of an ideal fluid, the stream 
function *((5,y) satisfies the equation 

**z + *r* = 0 (9) (i-1) 

where o is the vorticity. We will seek the solutions of 11.1) using the method of general- 
ized separation of variables: 

11, = a (f (2) -t g(y)) (1.2) 

The problem arises .here of finding the functions o, a, admitting of non-trivial separation 
of variables, i.e. a separation in which neither of the functions f,g is a polynomial of 
degree two or less. 

Substituting expression (1.2) into (1.11, we obtain 

U, + gy& a' + (i," + gU8)a" = @ 0 + g) 

where 4, = o-a. Since a' is not zero, the last equation can be written in the form 

x+fJY=F(z) (1.3) 
X = I,, -i- &i,, y = f,a + &a, 2 = f + g 

fi = a”la’, F = Cala’ 

We shall call the solution of Eq.tl.3) non-trivial, 
of non-trivial separation of variables, 

if the corresponding Eq.fl.1) admits 

Differentiating Eq.tl.31 with respect to x and y we obtain a relation which can be written, 
after dividing it by f,g, F in the form 

2g' (Z)X _t B" fzfY = F" (2) (1.4) 

Eqs.(1.3) and (1.4) can be regarded as a system of linear algebraic equations in the 
unknowns X, Y. The system is not inconsistent, 
dependent, 

provided that the equations are either linearly 
or uniquely solvable in X, Y. In the latter case we arrive at the relations 
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Y .= G (2). X = Ei (z) (1.5) 
where G, II are certain functions. Differentiating the first relation of (1.5) with respect 
to x and y we find that the mapping G must be linear:G(z) := az -+- 6, where a, be R. This means 
that the functions f, g, which represent the solutions of Eqs.fl.5) are polynomials of degree 
not higher than the second. Thus the separation will be non-trivial only provided that Eqs. 
(1.3) and (1.4) are linearly dependent. The conditions of linear dependence are as follows: 

Integrating the first of these relations yields the equation fi' p" -I- ('$ 
Consequently we have the fallowing lemma. 

LCTlVUX. Eq.(1.3) can have a non-trivial solution only in the case when the functions 
P, F satisfy the system 

@' _: p" k c, p" : q'F (1.6) 

Let p be the solution of the first equation of (1.6). In this case 

F (z) -2 slp (2) + s2p (z) 1 f3-2 (z)dz (l.i) 

is a general solution of the second equation of (1.6). 
Indeed, since F = p is a particular solution of the linear second-order equation (the 

second equation of (1.6f), it follows that the general solution has, according to /2/, the 
form (1.7). 

Note. If the function p is given, then a can be found from the equation 

on =z Pa' 0.8) 
and the functions @, w can be recovered using the formulas 

Q, -I a"F, @ =- @o-l (1.9) 

Theorem. Eq.(l.l) admits of a non-trivial separation of variables only when its right- 
hand sides (0 (*I have the form 

al* ln$ t_ a&, a,8 -i_ a,@* 

a, sin 9 -+- a, (sin $ In (tgVq *)) .i- 2 sin (V&j) 

a, ah 9 + a2 (sh li, In (th (Vrll)) -i- 2 sh (‘i&)) 
aI sh 11‘ -+- a, (sh I# arctg c'/$'P + ch (I/&)) 

where al, a2 are arbitrary constants. 
Eq.fl.1) is solved, as usual, to within the accuracy of the equivalence point transform- 

ations /3/. The proof is given below, and the corresponding functions CC and the first-order 
differential equations for f, g are also given. 

2. Here we will discuss the possible solutions of system (1.6), 
Let f~ = k, where kz = -c$;o. Then the corresponding function F will be equal to 

A,z -l- A, where A2 = SJk, 44, z s,s%. In this case we obtain from Eq.(1.31, as a result of 
separation, relations for f and g, which can be reduced to the following first-order equations: 

The function a is found from (1.8): a = c3eRz -f-G, where c,, c,E I?. Eqs.(l.9) yield 
the right-hand side of 0 (9): 

(0 ($1 =: A, ($ - cJ In [(Q - cl)ic,l -I- A& ($ - ~~1 

Using the transport transformation in 21 and the stretching transformation, we reduce 
the corresponding Eq.(l.l) to the standard form 

+X, i- qvv =_ 0 In211 i- a& 

Separation of variables of the form \i,(x,y) = ~(~)~(~~ was used in 141 to obtain particular 
solutions of the above equation. Moreover, it was shown of all equations of the type (1.11 
only the equations given above can be so separated. Therefore, the above equation will not 
be discussed here. The case @ ==O corresponds to a linear equation. 

If the constant c in the first equation of (1.6) is zero then p =-(2 i-C&". The relations 

d = c8 In I.2 -t c1 1 -I- c4. F = A, (z -+ c$ + A, (z + cl)-' 

where ear ck, A,, A2~Rti, are obtained in the usual manner. The right-hand side is found iron 
relations (1.9): 
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w (9) = c,Alex + c,A,e-2x, x = (11 - C,)/C, 
After applying the transport and stretching transformations in %, the corresponding 

Eq.fl.1) will have the form 
I&, f I& = a# $- a$+* (2.1) 

The separation of variables 9 = In(f(rf -kg(y)) f or this equation was carried out earlier 
in /51. The general solution of Eq.f2.1) was given for the case az = 0, in /b,f. 

Let the constant c in the first equation of (1.6) be negative and equal to --k" where 

krz ft. Then two cases are possible: fi = -k th (zk + c,) or f~ = -k cth(zk i- Cl). 
In the first case we have, in accordance with (1.8), CL = cQ + I&k-’ arctg eh'zce** Formulas 

(1.7) and (1.9) yield 
a, 2 c,A, shw/ch% -+- c,A,(z~ shw/ch"w - Uch w), 10 = kr + cl 

where A,, Aa are arbitrary constants, 
It remains to invert the function tc and determine 

The stretching 
standard form 

and the function a 

o (9) = --'izczA1 sin 2x - VpclA, (sin 2~ ln (tg 'iI x) + 2 sin x) 

x = k (* - cs)Jc, 

and transport transformations reduce the corresponding Eq.(.l..l) to the 

zlrr -+- $rV = a, sin* + uz (sin* In (tgV&) -I- 2 sin 'I&) (2.2) 

to the form 

a = 4 afctg ef+g (2.3) 

how we must produce non-trivial solutions of Eq.(1.3), which, in the present case, we 

must transform to-the form 
cth (2)(X - a,) = -a, - a,z + Y (2.4) 

and differentiate it in z and 3. As a result we obtain an expression, which can be written 
in the form 

Equating the right-hand sides of the last equations, we obtain a relation which can 
separated into two equations for f and g: 

f,, = 2f, (fx” - aof -t- m - a,), g,,, = 2g, (gu2 - a2g - ml 

(m is the separation constant). We seek the solution of the first of these equations in 

be 

the 
form fzs = Q (1). As a result we obtain a linear second-order equation with constant coef- 
ficients, whose general solution leads to a first-order equation for the function f 

f,” = plezf $- pze-* + apf - m + a, (2.5) 

Similarly we obtain the equation 

where % % is a constant, as yet arbitrary. Next we substitute the expressions for fx2, .!?y', 
and A,, &, into relation (2.41. It remains to equate the coefficients accompanying the dif- 
ferent degrees of the exponent and establish a connection between the constants n1 = rr, 11~ = pl. 

In order to study the case fi = -kcth (kz -I- %), it is sufficient to repeat, with minimum 
changes, the arguments given above. In place of (2.2) we now obtain 

$Xx + &,V = a, sh$ f- a2 (sh$ In (th 'I&) + 2 sh 'it 9) (2.7) 

which admits of a separation of variables of the type 

*=21n IcthV,(f-I-g)l (2.8) 

and the functions f, g will be solutions of Eqs,(2.5) and (2.6) with different relations con- 
necting the constants rlr = --pi, no = --PI. Direct substitution can be used to confirm the 
validity of this assumption. 

If the constant c in the first equation of (1.6) is positive, the solution will be B= 
- I/cctg (lG2. -i- c,). Moreover, we shall follow the above scheme and repeat the arguments which 
yield the standard equation 

+&.= -+ &,# = a, sh 9 -t- 2a, (sh 9 arctg I'@ -j- ch */&) 

We will separate the variables as follows: 

~=zlnlt~l/~(~~g)i 

(2.9) 

(2.10) 
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Here the functions f, g satisfy equations which differ from (2.5) and (2.6) only in the 
fact that e2n is replaced by sin 2h, e-2" by cos 2h (h = f, g), where Q = pl, Q = -pLz. 

In /7-91 the equivalent multiplicative separations of variables were used for Eqs.(2.2) 
and (2.7), but the constant a2 was equal to zero. It is possible that the separation of the 
type (2.10) for Eq.(2.8) is new even when a, = 0. In what follows, the constant a, will be 
assumed to be non-zero everywhere. 

3. Constructing the streamline patterns for Eqs.(2.2), (2.7) and (2.9) requires a 
knowledge of the topology of the level of the corresponding functions A (x, Y) = f (4 -!- R (Y). 
Although solving the differential equations of the type (2.5) can be reduced to inverting the 
integrals, the qualitative properties of the functions j, g can be studied more simply using 
the well-known methods of the theory of non-linear oscillations /lo/. 

The behaviour of the solutions of Eqs.(2.5) and (2.6) is governed by the corresponding 
potential functions 

n, = -p# - pze-2’ - a,i, II, == --rl,e2g - q2cJ-2~ - a?g (3.1) 

If the constants p1,P2 are negative, then both functions II,, 11, are convex in the 
downward direction and each has a single minimum point. Therefore the non-constant solutions 
of Eqs.(2.5) and (2.6) are, in this case, periodic functions. 

Fig.1 shows the pattern of stream lines obtained by solving Eqs.(2.5) and (2.6) numiercally 
for pLI = pz = -0.5. RL = 1.81, a, = 3.06, up = 0.1. Moreover, we have assumed that j(O)= s(O)= 0. The 
vortex circuits and distributed in a chequered pattern. The period of the function f is 4.31, 
while that of g is 4.08. This eanbles us to determine the distance between the centres of 
any two vortices. The maximum value of the velocity vector modulus is 2.14. It can be shown 
that the qualitative pattern of the stream lines for CL1 <Q, P.z<O, in the general case, has 
the form shown in Fig.1, or a pattern obtained by rotating it by 90". In special cases the 
boundaries of the neighbouring circuits become common. 

Fig.2 Fig.1 

Fig.4 

Fig.3 

If the constants pl, pL2 are positive, then the functions n,, np will be convex in the 
upward direction and every function will have a unique maximum. This means that we have, in 
each of the phase planes (f,f,) and (g, &I), one saddle-type singularity through which the 
separatrices pass. The separatrices divide the phase plane into regions filled with twice 
vanishing trajectories /lo/. Since the right-hand sides of Eqs.(2.5) and (2.6) increase ex- 
ponentially, the twice vanishing trajectories have corresponding solutions with a domain of 
definition consisting of bounded intervals. The intervals divide into three classes. The 
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first (second) class contains the solutions departing to plus (minus1 infinity at both ends of 
the interval, and the third class consists of solutions tending to minus infinity at one end, 
and to plus infinity at the other end of the interval. We shall call such solutions the twice 

vanishing solutions of class 1, 2 or 3. The separatrices have the corresponding SolUtiOnS 
whose domain of definition consists of intervals of the form (a, 00) or (--m,a). Their Plots 
have vertical and horizontal asymptotes. The solutions can be of two types, depending on 
whether the corresponding function tends to plus or minus infinity on approaching the point a. 
Henceforth, we shall call them the limitingly vanishing solutions of type 1 Or 2. 

If we take as f and g the fimitingly vanishing solutions of type 1, then the correspond- 
ing function II, will determine the motion which can be treated as a flow within a two-sided 

right angle. When f and g are twice-vanishing solutions of class 1, then the resulting motion 
can be interpreted as a flow in a rectangular cylinder. In these, as well as in certain other 

cases, the velocity is bounded everywhere. 
The moduli of the velocity vector components are calculated, taking relations (2.31, (2.5) 

and (2.6) into account, from the formulas lul=iIpvi,iui = lOXI. If the value of $7 is fixed and 

f-m, then the velocity vector is bounded. When the functions f and g both tend simul- 
taneously to infinity, the velocity tends to zero.iThe velocity will have a singularity at some 
point if on approaching this point f-m, g---m. 

One of the solutions with singularities is shown in Fig.2. The stream lines belong to 
three regions. Regions I and 3 consist of unbounded trajectories emerging from point B, or 
going into point A. Region 2, which separates zones 1 and 3, is filled with trajectories con- 
taining points A and B. Although every stream line from region 2 is bounded, arbitrarily long 
trajectories exist. The pattern of stream lines in question is obtained in the case when the 
limitingly vanishing solution of type 1 is taken as f, and the twice vanishing solution of 
class 2 as g. It should be noted that the pattern of stream lines given in I4f and correspond- 
ing to such solutions, is not depicted quite accurately since it does not show the arbitrarily 
long trajectories lying in region 2. 

Suppose now that the constants pl, p9 
quantity a, = --4%f-pllL~ 

have different signs pl>o, &<o. Then the 
will become the bifurcation value for Eq.(2.5). Indeed, when a,>a,, 

the first derivative of the function ri, will be negative. All phase trajectories in the 

Plane (f, 1,) are twice vanishing, and twice vanishing solutions of ckass 1 correspond to them. 
If a, = a,, then the function II, 
0. 

decreases everywhere and at the point of inflection lX,* = 
A higher-order singularity appears in the phase plane and the separatrix passes through it. 

The limitingly vanishing solutions of type 1 correspond to it. In the case of a,<a, the 
function II, decreases everywhere except at a bounded segment, and has a pair of extrema, i.e. 
a maximum and a minimum. This means that two singularities exist in the phase plane, a saddle 
and a centre. Closed trajectories lie near the centre. The separatrix loop enveloping these 
trajectories emerges from the saddle and returns to it. 
to it, and f tends to a constant value as x+*M. 

A smooth bounded solution f corresponds 
We shall call such a solution twice 

limited. Sections of the separatrix also exist which correspond to the limitingly vanishing 
motions /lo/ in the phase plane. The remaining phase trajectories are twice vanishing. Me 
analyse the behaviour of the solutions of (2.61 in the same manner. Here the bifurcation value 
is a, = -a,. When a2 < -aar all trajectories in the phase plane are twice vanishing and 
two singularities, a saddle and a centre, appear when a2 > --a,. 

Qualitative patterns of the stream lines can be obtained by choosing the corresponding 
functions j, g. 

For example, when =2 > --a. < the function f will be a twice vanishing solution of class 
1 and the function g can be taken as periodic. 

Fig.3 shows the flow field obtained by solving Eqs.i2.5) and (2.6) numerically for PI= 
--_I&, = 0.5 a2 = 3, a, *= m = 0.04. Moreover; we have assumed that f(O) ==iz (0) = 0. The period of the function 
g is equal to 4.75. The function jF is defined in the interval t-1.32, 1.321. The solution can 
be interpreted as a layer of displacement between two parallel walls. 

If on the other hand we take the twice limited solution as g, then the pattern of the 
stream lines will look like the patterns shown in Fig.4. 
is a continuous bounded representation. 

It is clear that here the velocity 

The case of pI<O, pr>O is analogous to the previous case and will therefore not be 
discussed. If one of the constants pI, ps is equal to zero, then we can show that no new 
solutions occur. 

Since Eq.(2.7) admits of a separation of variables (2.8) with the functions f,g, satisfy- 
ing the same EqS.(2.51 and (2.6) (only the relation connecting the constants is different here), 
it follows that the problem of constructing the level,lines of the function h = f + g is 
similar to that discussed above, New types of flows are possible here, such as, for example, 
a flow between two sinuous walls periodic in 2. The flow appears in the case of ~~(0, pz<O, 
when f is a periodic function and $ is a twice vanishing solution of class 2. We can describe 
the whole set of solutions without major difficulties. However, in the course of constructing 
the patterns of Stream lines wemust pay Special aktentiOn to the lines on which the sum,i +.g is 
equal to zero, since an approaching these lines the velocity increases without limit. _ 
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In conclusion we should mention the solutions of Rq.(2.9) obtained by separating the 
variables (2.10). The behaviour of the functions f, g is determined here by the potentials 

& = --ctl sin 2j - ns cos 2j- n,f, II, _ -nr sin 2g + n? ces 2g - a,g 

This matches qualitatively the behaviour of the function @, which is a solution of the 
equation O,3 -= :!cos@ -/-- c,O {- cL' analysed in detail in /lo/. The bifurcation takes place at 

1 n, / -= p*, p* = 2 'jlp32 " &2. If j a2 I ) p*, then all solutions of the corresponding equations 
are defined on R, haveeach a single extremal point,and have an upper or lower limit depending 
onthe sign of az. When la, j< p*, we add to them, such equations as the twice limiting and 
periodic ones. The case a2 -= 0 leads in fact to the equation of a mathematical pendulum. 
The construction of the corresponding patterns of stream lines is not difficult. 

ExmnpZe. Let the inequality a,>+* hold. Then the functions f and g will have no 
upper limit on R and the minimum points will represent their unique extrema. Therefore the 
level lines I~=i(+)i- g(y) will be closed curves, diffeomorphic to the circle. Clearly, a 
natural number n exists such that the set 

Jf, == ((s, y) E XT 3.11 -t- x.90 ‘. (i +- gV2 I.. nn -I- $3) 

will be non-empty and diffeomorphic to the annulus in I?". If we regard the boundary iN, as 
solid walls. then a flow between two cylinders will be obtained. When a, > ?a,. the derivative 
in 
ii, 

1. 

2. 
3. 
4. 
5, 

6. 
7. 
8. 

9. 

q of the right-hand side of ~($0 - ’ 
*. 

wrll satisfy the inequalities x,>o'>&>O, where K,, 

are suitably chosen constants. All that remains now is to refer to Arnol'ds theorem./l/. 
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